Science of Typography

Essay by Ellen Lupton, “Cold Eye: Big Science,” Print magazine, Summer 2003.
Despite heroic efforts to create a critical discourse for design, our field remains ruled, largely, by convention and intuition. Interested in alternative attitudes, I recently set out to examine the scientific literature on typography. From the late nineteenth century to the present, researchers from various fields—psychology, ergonomics, human computer interaction (HCI), and design—have tested typographic efficiency. This research, little known to practicing designers, takes a refreshingly rigorous—though often tedious and ultimately inconclusive—approach to how people respond to written words on page and screen.
What did I learn from slogging through hundreds of pages photocopied or downloaded from journals with titles like Behavior and Information Technology and International Journal of Man-Machine Studies? Both a little and a lot.
Each study isolates and tests certain variables (font style, line length, screen size, etc.). Although rational and scientific, this process is also problematic, as typographic variables interact with each other—a pull on one part of the system has repercussions elsewhere. For example, in 1929 Donald G. Paterson and Miles A. Tinker published an analysis of type sizes—part of a series of studies they launched in pursuit of “the hygiene of reading.”1 Texts were set in 6-, 8-, 10-, 12-, and 14-point type. The study emphatically concluded that 10 points is the “optimum size” for efficient reading—a result relevant, however, only for texts set at a particular line length (80 mm), in a particular typeface (not disclosed).
Another study by Paterson and Tinker tested ten different fonts, including traditional, serifed faces as well as the sans serif Kabel Lite, the monospaced American Typewriter, and the densely decorated, neo-medieval Cloister Black.2 Only the last two fonts—Typewriter and Cloister—caused any significant dip in reading speed. The authors’ conclusion: “Type faces [sic] in common use are equally legible” (613). Science leaves the designer more or less at sea in terms of font choice.
A 1998 study testing fonts on the screen revealed conflicts between how users performed and what they said they liked. An interdisciplinary team at Carnegie Mellon University compared Times Roman with Georgia, a serif font designed for the screen.3 Although the team found no objective difference, users preferred Georgia, which they judged sharper, more pleasing, and easier to read. A second test compared Georgia with Verdana, a sans serif face designed for on-screen viewing. In this case, users expressed a slight “subjective preference” for Verdana, but they performed better reading Georgia. Once again, the study concludes with no definitive guide.
How is typographic efficiency judged? “Legibility” concerns the ease with which a letter or word can be recognized (as in an eye exam), whereas “readability” describes the ease with which a text can be understood (as in the mental processing of meaningful sentences). Designers often distinguish “legibility” and “readability” as the objective and subjective sides of typographic experience. For scientists, however, readability can be objectively measured, as speed of reading + comprehension. Subjects in most of the studies cited here were asked to read a text and then answer questions. (Speed and comprehension are factored together because faster reading is often achieved at the expense of understanding content.)

[Ler mais...] > Ellen Lupton: Design Writing Research: Science of Typography